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1. Introductory overview 

Since sufficient vertical resolution has been reached over the operationally used 
integration domains, the well established and almost universally accepted similarity theory 
(Monin and Obukhov, 1954) has been adopted replacing the early approach used in the Eta 
model (Janjic, 1990).  The first attempt to apply the similarity theory with the step-mountains 
was made by Lobocki (1993).  The parameterization described here was developed by Janjic 
(1996a, 1996b). 

2. The similarity theory 

a. Notation and definitions 

In order to calculate the surface fluxes, the similarity theory requires that boundary 
conditions be prescribed at two levels in the air, z1 and z2 . The turbulent fluxes are assumed to 
be constant between these two levels.  The values of the relevant variables at the lowest model 
level height zlm  above the surface are usually used as the upper boundary conditions. 

The turbulent fluxes for momentum M , heat H , buoyancy H and humidity E are, v 
respectively, traditionally written in the flux-gradient form 

dU dΘM = − < u' w'>= KM , H = − < Θ ' w'>= KH ,
dz dz 

(1) 

dΘ dqvHv = − < Θv ' w'>= KH , E = − < q' w'>= KH . 
dz dz 

Eqs.(1) can be rewritten as 

dU M dΘ H 
= , = ,

dz KM dz KH 

(2) 

dΘv Hv dq E 
= , = . 

dz KH dz KH 

In (1) and (2), < ... > denotes ensemble averaging, the primes indicate the deviations from the 
mean values, KM and KH are the exchange coefficients for momentum and heat, respectively, 
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and the subscript v indicates that the virtual potential temperature is used. The scales defined by 

u∗ = M 1 2 H Hv E , Θ∗ = , Θv∗ = , E∗ = (3) 
u u u∗ ∗ ∗ 

are also traditionally used. 

b. Finite difference form of the fluxes in the surface layer 

If F is one of the fluxes (2), S is the corresponding variable that is being transported by 
turbulence, U , Θ , Θv or q , and KF is the exchange coefficient KM or KH , after integration 
of a formula of the form (2) from height z1 to height z2 taking into account that the fluxes are 
constant with height, one obtains 

z2 dzS2 − S1 = F ∫  . (4) 
KFz1 

Defining the bulk exchange coefficient KFbulk by 

z 
z2 − z1 

2 dz 
= , (5) 

K ∫ KFbulk Fz1 

one may write the fluxes (1) in the finite difference form 

S −  SF = K 2 1 . (6) Fbulk z − z2 1 

c. Vertical profiles and the Obukhov length 

According to the similarity theory, within the surface layer, 

∂S S∗ = ϕF (ζ ) (7) 
∂z kz 

Here, 

F FS = = (8) ∗ 1 2 M u∗ 
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is a scale of type (3), ϕF are empirically or otherwise determined functions, 

zζ = (9) 
L 

is the nondimensional combination of geometric height and the Obukhov length scale 

3 2ML = , (10) 
kβgHv 

where 

1β = ,
Θlm 

Θlm is the potential temperature at the lowest model level, k is the von Karman constant and g 
is gravity. 

Note that if ζ tends to zero, ϕ ( )0 = const (typically close to 1), and the integration of F 
(7) with respect to z leads to the familiar log profile of S between the heights z1 and z2 .  As 
can be seen from the definitions (9) and (10), ζ tends to zero either for neutral stratification, or 
when the distance from the surface z tends to zero for nonzero L . Thus, when the surface is 
approached, the vertical profiles of all variables tend to assume the logarithmic form. 

Upon integration of (7) from height z1  to height z2  within the surface layer, 

z2 
S2 − S1 = 

S∗ ϕF ( )z dz . (11) ∫ k z 
z1 

Note that the assumption about constant fluxes implies that the fluxes F and the scales S∗ can 
be freely moved in and out of the integrand on the rhs of (11).  Thus, (11) can be rewritten as 

S z2 L dz ∗S2 − S1 = ∫ϕF ( )z ,
k z L 

z1 

or utilizing (8) and (9) 

F z2 dζS2 − S1 = ∫ϕF ( )z . 
ku ζ∗ z1 

4 Z. Janjic, Surface Layer 



 
    

     
 

    

 

    

   

    

  

    

      
 

 

     

   

 

    

    
       
 

 

 
   

 

 
   

  

 
        

  

  
 

 

    

 
 

  

 

The neutral case, when L tends to infinity and ζ tends to zero is a singular point and requires a 
special treatment.  Therefore, 

z2F dζ dζS2 − S1 = ∫ [ϕF ( )z −ϕF ( )0 ] +ϕF ( )0 
ku ζ ζ∗ z1 

and 

F z2 dζ F z2 
S2 − S1 = ∫ [ϕF ( )z −ϕF ( )0 ] + ∫ϕF ( )0 d (ln z) . (12) 

ku ζ ku ∗ ∗ z z1 1 

Since the function ϕF ( )z  is known, the integrals on the rhs of (12) can be evaluated, yielding 

 z2 F =Ψ (ζ )−Ψ (ζ )+ϕ ( )0 ln  . (13) F F 2 F 1 F 
 z1  

Thus, (13) can be rewritten in the form 

FS2 − S1 = F F . (14) 
ku∗ 

The integral functions ΨF in (13) [and therefore F F in (14)] are known either in the analytical, 
or in the tabular form, and several sets of such functions based on different measurements are in 
use. 

In particular, for F = M , S = U , F F =F M , from (14) 

MU2 −U1 = F M ,ku∗ 

and 

uU2 −U1 = ∗F M . (15) 
k 

If z1 , z2 , U1 , U2 and the Obukhov length L are known, u∗ , and consequently the momentum 
flux M , can be readily obtained from (15).  After that, any other flux F can be computed from 
(14). 

d. Computation of Obukhov length 
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The problem is that L is typically not known, and that (14) is highly implicit.  The 
Obukhov length L is sometimes (c.f., e.g., Lobocki, 1993) estimated by establishing an 
approximate relationship of the form 

 z z  
L = L Ribulk , z2 − zS , z2 − zS ,..., ln 2 ,ln 2 ,...  , 1 2 z z S S 1 2  

where Ribulk  is the bulk Richardson number computed using finite differences, and zS1
, zS2

, … 

are the heights at which the lower boundary conditions are specified for the variables S1 , S2 ... . 
However, this approach becomes impractical for more than one zS . 

Here, the iterative approach is chosen for its flexibility with respect to various 
modifications and refinements (e.g., various stability functions, using more than one zS ).  With 

0this approach, the first guess momentum flux M 0 is used together with the first guess flux Hv 

in order to specify the first guess Obukhov length L0 . The first guess fluxes can be computed 
using the first guess bulk exchange coefficients 0 and 0 in the finite difference bulk KMbulk KHbulk 
formula (6).  In addition, note that substituting (6) into (14) one obtains 

S − S F2 1 FS − S = K2 1 Fbulk z − z ku2 1 ∗ 

and solving this equation for u∗ , 

F K1 2 F Fbulk M = u = . (16) ∗ k z − z2 1 

Thus, given the first guess Obukhov length L0 , the improved, first iteration bulk exchange 
coefficients are obtained from 

K1 
Fbulk k 0= u∗ , z − z F2 1 F 

where, as before, the superscript 0 denotes the first guess values, and the superscript 1 denotes 
the value after the first iteration.  Then the procedure is repeated until the convergence is 
reached, i.e., until the fluxes do not change any more with new iterations.  Good first guess bulk 
exchange coefficients can be obtained by using the values at the end of the iterative procedure in 
the previous model time step.  The described procedure is used in the model and can be 
summarized as follows 

Momentum flux: 
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i i U 2−U1M = KMbulk z − z2 1 

(Over water, the difference U2 −U1 is limited to 35 ms−1 ), 

Buoyancy flux: 

Θ −Θi i v2 v1Hv = KHbulk , 
z − z2 Θ1 

Obukhov length: 

3 2i 
L = (M )i 

kβgHv
i 

Integral stability functions for momentum and buoyancy: 

i i iF ( ), F ( ) =F L =F Li ,M M H H 

Updated bulk exchange coefficients: 

1 2i+1 iKMbulk k (M ) 
z2 − z1 

=
F M

i , 

(17) 

1 2i+1 iK k M( )Hbulk 
z2 − zΘ1 

=
F H 

i , 

where i denotes the iteration count.  Even though there is no formal guarantee, as a rule, this 
procedure converges, and the fluxes are computed with satisfactory accuracy typically with no 
more than 3 iterations. 

e. Stability functions limits and Beljaars correction 

Different stability functions ϕF (and therefore ΨF ) can be used over land and over 
water. The range of non-vanishing turbulent fluxes on the stable side can be extended by 
imposing an upper limit on ζ .  Whenever ζ reaches or exceeds the prescribed upper limit 
value, it is set to this prescribed value.  This may be needed in order to warm the land surface by 
the air overnight and thus prevent unrealistic plummeting of the skin temperature.  On the other 
hand, note that this procedure can lead to unrealistically large fluxes in the case of strong 
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stability. 

On the other side of the stability range, the Beljaars (1994) correction is applied in order 
to avoid the singularity in the case of free convection.  With this correction, a fraction of the 
surface buoyancy flux H is converted into the kinetic energy of the near surface wind induced v 
by the large eddies so that the friction velocity u∗ , and therefore the Obukhov length (10) remain 
nonzero.  The fraction of the surface buoyancy flux converted into the kinetic energy is assumed 
to be 

2 )2UB = (γw∗ (18) 

where γ is an empirical constant, and the scale w∗  is defined by 

1 3w∗ = (βgHvH PBL ) , 

where H PBL is the PBL height (or a constant on the order of typical PBL height). Beljaars 
(1994) suggested the value γ = 1.2 . In practical applications, the only modification required is to 
add UB calculated from (18) to the wind speed at the upper boundary of the surface layer. 

Since the stability functions are known only for a certain stability range, a lower 
boundary is imposed on ζ as well.  This value is reached if the Beljaars correction is not 
sufficient to prevent ζ  to do so. 

3. The lower boundary condition 

a. The problem 

The similarity theory requires that boundary conditions be prescribed at two levels in the 
air, z1 and   The values of the relevant variables at the lowest model level zlm above the z2 . 
surface are usually used as the upper boundary conditions.  However, the definition of the lower 
boundary condition is not straightforward. 

As already pointed out, independently of stratification, the profiles of the relevant 
atmospheric variables tend to assume the logarithmic form as the lower boundary is approached. 
Since the log function has a singularity for z = 0 , it is traditionally assumed that the log profile 
ends at some small but finite height z0 above the surface, and that the variable considered 
(U ,Θ ,) takes on its lower boundary value at this height.  This is justified by the assumption 
that the values of the relevant variables in the thin layer of the air adjacent to the surface take on 
the surface values.  This situation is schematically represented in Fig. 1a.  The height z0 ‚ is 
called the roughness height or roughness length.  As can be seen, from (13) and (14), with all 
other parameters the same, the variation of z0 can significantly affect the fluxes. 
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Fig. 1. Logarithmic profile ending (a), and logarithmic profile with viscous sublayer ending (b). 

The situation near the surface is schematically represented in Fig. 1b. Within the thin 
layer of air adjacent to the surface there is not enough space for turbulent eddies to develop so 
that the molecular transport is dominating.  This layer is often called viscous or interfacial layer. 
Recent experience (e.g., Janjic 1994, 1996; Chen et al. 1997) indicates that taking into account 
the processes in the viscous sublayer can affect significantly the surface fluxes and consequently 
the PBL evolution and, e.g., moist convection. 

The diagram in Fig. 1b also indicates how these processes can be taken into account.  The 
first and perhaps more popular approach is to define different z0 ’s for different variables, 
possibly dependent on flow regime.  This technique is applied over land following Zilitinkevich 
(1995). 

The second method is to match the log curve by a separate viscous sublayer profile, and 
to specify the height and the value of the considered variable at the matching point.  By doing so, 
the lower boundary values for the turbulent layer denoted earlier by z1  and S1  would be defined. 
This approach is applied over water following Janjic (1994). 

b. Viscous sub-layer over land 

The Zilitinkevich formula is based on the following considerations.  In the near-surface 
logarithmic range z0U << z << L and 

H  z 
Θ( )z =Θ0 + ϕH ( )0 ln  . (19)

ku z*  0U  

Here z0U is the roughness length for momentum, and Θ0 is the potential temperature extended 
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logaritmically from the log layer downward to the level z0U . Thus, Θ0 is an integration 
constant, not necessarily equal to the surface value ΘS . The problem is how to relate the 
roughness length z0U to the roughness length for temperature z0T at which the log profile 
reaches the surface value of the potential temperature ΘS . 

Near the surface, the momentum flux M = u2 consists of two terms, i.e., the pressure ∗ 

term u2 
p∗ and the viscous term uν 

2 
∗ .  Close to the roughness elements the velocity scale is u∗ 

and the velocity gradient scale is 

u∗ (20)
z0U 

Then, the viscous contribution in the momentum flux is 

u uν 
2 
∗ =ν ∗ , (21)

z0U 

and the corresponding temperature scale is defined by 

H HΘν∗ = = . (22)
ku uν * ∗k ν 

z0U 

The temperature increment 

∆Θ =Θ0 −ΘS (23) 

is scaled by Θν ∗ , i.e. the assumption is made that 

H∆Θ = CZΘν∗ = CZ (24) 
∗k ν 

u 

where CZ is a constant to be determined empirically. Then, from (19) and (23), assuming that 
ϕ H (0) = 1 as is often done, 

H  z 
Θ (z) =ΘS + ∆Θ + ln  . (25)

ku z∗  0U  
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Substituting (24) into (25), and rearranging one obtains 

  

H  CZ ∗ z Θ (z) =ΘS + 
u 

+ ln

  ku  u z ∗ ∗  0U  ν  

 z0U  

and 

H  z u  z 0U ∗Θ (z) =ΘS + CZ + ln  . (26)
ku ν z∗   0U  

Defining Reynolds number 

z uRe = 0U ∗ , (27)
ν 

(26) can be further rewritten as 

H  1 2  z 
Θ (z) = CZ Re + lnΘS + 

ku∗   z0U 



 

and 

1 2 H z exp(C Re )Θ (z) =ΘS + ln Z  ,
ku z∗  0U  

or, finally, 

H  z Θ (z) =ΘS + ln , (28) ku z∗  0T  

where 

 z u 1 2 0U ∗ = z0U exp(− CZ Re )= z0U exp − CZ  . (29)z0T ν  

Formula (29) is in good qualitative agreement with the experimental data by Sun and 
Mahrt (1995). 
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c. Viscous sub-layer over water 

The viscous sub-layer over water surfaces (Janjic, 1994) is designed using the second of 
the two described approaches, the explicit one.  Two simplifying modeling assumptions are 
made: 

• There are two distinct layers: (i) a thin viscous sublayer immediately above the surface, 
where the vertical transports are determined entirely by the molecular diffusion (note that 
the equilibrium profiles within such viscous sublayer must be linear since the molecular 
diffusivities are assumed to be constant), and (ii) a turbulent layer above it, where the 
vertical transports are defined entirely by the turbulent fluxes. 

• The fluxes must be continuous across the interface between the viscous and turbulent 
sub-layers, i.e., the fluxes at the top of the viscous sublayer must coincide with the fluxes 
at the bottom of the turbulent sublayer. 

On the other hand, Liu et al. (1979) (hereafter referred to as LKB79), proposed the following 
profiles in the immediate vicinity of a smooth surface [LKB79, Eq (8)], 

u ∗ −z 1  MD1νU1 −US = D11− e  (30)
u  ∗ 

  

u ∗ −z 1 D χ HΘ1 −ΘS = D2 1− e 2  (31)
u  ∗ 

  

u ∗ −z 1  ED3λq1 − qS = D31− e  . (32)
u  ∗ 

  

Here, the subscript S denotes the surface values, the subscript 1 indicates the values at height z1 

above the surface where the molecular diffusivities are still dominant, D1 , and are D2 D3 

parameters to be discussed later, ν , χ and λ are the molecular diffusivities for momentum, heat 
and water vapor, respectively, and, as before, M , H and E are the turbulent fluxes above the 
viscous sublayer. 

For a small argument ξ  of the exponential function 

−ξ ≈1− e ξ (33) 
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Thus, for small 

u u u∗ ∗ ∗ξ = −z1U = −z1T = −z1q (34)
D ν D χ D λ1 2 3 

(30)-(32) can be rewritten as 

U −Uν 1 S = M , (35)
z1U 

χ Θ1 −ΘS = H , (36)
z1T 

q1 − qSλ . = E (37)z1q 

Here, the heights z1U , z1T , and z1q are defined by (34), i.e., 

ξνD z1U = 1 , (38)
u∗ 

ξχD z1T = 2 , (39)
u∗ 

ξλD z1q = 3 . (40)
u∗ 

and the values of the respective physical quantities at these heights are indicated by subscript 1 
in (35)-(37). 

Note that both modeling assumptions will be satisfied if the heights (38)-(40) are 
chosen to represent the depths of the viscous sublayers for the respective variables. The 
continuity of the fluxes across the interface between the entirely viscous and the entirely 
turbulent layers is reflected by (35)-(37). The viscous fluxes on the left hand sides of (35)-
(37) are in the finite difference form, but their numerical values coincide with the 
values obtained from the differential formulas in the equilibrium steady state. As already 
pointed out, in that case the profiles of the respective variables in the viscous sublayers are 
linear. 

Using the bulk momentum and heat exchange coefficients KMbulk and KHbulk , 
respectively, the turbulent fluxes in the surface layer above the viscous sublayer are represented 
by 

13 Z. Janjic, Surface Layer 



  

   

 

 

 

  

  
   

  
    

 

 

 
 

 

 

  

 

 
 

 

 
 

 

 

 

M = K U lm−U1 (41)Mbulk ∆zU 

H = KHbulk 
Θ lm−Θ1 (42)
∆zΘ 

q −q1 .E = KHbulk 
lm (43)
∆zq 

Here, the subscript lm denotes the variables at the lowest model level and 

∆z = zlm − z1 

where z1  is the height of the viscous sub-layer for the variable considered. 

Combining (35)-(37) with (41)-(43), after some algebra, one obtains (Janjic, 1994) 

KMbulk z1UU + US lmν∆zU1 = K 
U

z (44)
Mbulk 1U1 + 
ν∆zU 

KHbulk z1TΘ + ΘS lmν∆zΘ = K 
T

z (45)1 
Hbulk 1T1+ 
ν∆zT 

KHbulk z1qq + qS lmν∆z 
q1 = K 

q
z . (46)

Hbulk 1q1+ 
ν∆zq 

Thus, the required lower boundary conditions for the turbulent layer are expressed as weighted 
means of the values at the surface and at the lowest model level. These boundary conditions are 
defined at the heights (38)-(40). Note that (44)-(46), together with (38)-(40) represent a closed 
system provided the parameters D1, D2 , D3 and ξ are known. 

The viscous sub-layer over water is assumed to operate in three different regimes: (i) 
smooth and transitional, (ii) rough and (iii) rough with spray, depending on the roughness 
Reynolds number 
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z uRe = 0 ∗ . (47)
ν 

Here, 

2 ∗ −5z = max0.018 u ,1.59 ×10  . (48)0 g  

When the Reynolds number exceeds a prescribed value Rer the flow ceases to be smooth 
and the rough regime is entered. In the rough regime the momentum is transported also 
by pressure forces on the roughness elements so that (30) loses validity (LKB79).  
Consequently the viscous sub-layer for momentum is turned off. However, for heat and 
moisture, the viscous 
sublayer is still operating until the rough regime with spray is reached at a critical value Res 
when the viscous sublayer collapses completely. In the rough regime with spray the breaking 
waves and the spray are assumed to provide much more efficient way of exchange of heat and 
moisture between the ocean and the air than that that can be accomplished by the molecular 
viscosity. Note that instead in terms of Re , the boundaries between the regimes can be also 
defined in terms of u∗ , since Re is a monotonous function of u∗ . 

For the parameters D1, D2 and D3 appearing in (30)-(32), LKB79 suggest [Eq (11)] 

D1 = GRe 41 , (49) 

D2 = GRe 41 Pr 21 , (50) 

1 4 1 2 D3 = GRe Sc , (51) 

where Pr = v χ is the Prandtl number, Sc = v λ is the Schmidt number, and G is a constant, 
but different for different regimes. With these definitions, and the definition (47), (38)-(40) take 
the form 

 z0u G ∗  
41 

 ν z1U = ξν (52)
u∗ 

 z0u  41
G ∗  Pr 21 
 ν z1T = ξχ (53)

u∗ 
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1 4  z0u  Sc1 2 G ∗  ν z1q = ξλ . (54) 
u∗ 

For the smooth regime LKB79 used the value of G which was close to 30. When the flow ceases 
to be smooth they suggest the value of about 10 which fits best the Mangarella et al. (1973) data. 
These two values are also applied in the Eta model for the corresponding regimes. The Prandtl 
number and the Schmidt number were assumed to be the same, i.e., Pr = Sc = 0.71, and the 
molecular viscosity for momentum was ν = 0.000015 . The molecular diffusion coefficients for 
heat and moisture, χ and λ , are determined by ν , Pr and Sc  . 

Concerning the values of u∗ at which the transitions between the different regimes occur, 
they are u∗r = 0.225 ms−1 and u∗s = 0.70 ms−1 , respectively.   These values qualitatively agree 
with the measurements.  The parameter ξ is a tuning parameter in (52)-(54). 

In practical implementation, the viscous sublayer variables are iterated together with the 
Obukhov length.   As the first guess, u∗ from the previous time step is used in (48) to compute 
the first guess z0 .  With the first guess depths z1U , z1T and z1q calculated from (52)-(54), the 
first guess lower boundary conditions for the surface layer U1 , Θ1 and q1 can now be obtained 
from (44)-(45) using KMbulk and KHbulk from the previous time step.   However, in order to 
prevent the two-grid-interval oscillation, the average values of U1 , Θ1 and q1 from the first 
guess and the previous time step are used. Analogous procedure is repeated in the subsequent 
iteration steps. 

4. Illustration of performance 

For historical reasons, and for easier comparison with experimental data, the surface 
fluxes are sometimes cast in the form 

M = CD U10 U10 

(Θ10− ΘS ) .H = CH U10 

Here, CD and CH are the “bulk aerodynamic coefficients” ( CD is the “drag coefficient”), the 
subscript 10 denotes the values at 10 m height, and S indicates the value at the lower boundary. 

The equivalent bulk aerodynamic coefficients CD and CH over land obtained with  the 
described  surface layer  scheme  are  shown, respectively, in  Figs.  2  and 3 for the   neutral 

− 100stratification  (empty squares)  and  the difference (Θ10 − Θ S ) taking  on  the   values 

(diamonds) and 100 (filled squares) as functions of the wind speed at 10 m . The   computations 
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were made with z0U = 0.1 m  and synthetic stability functions of Lobocki (1993). 

The analogous results for the bulk aerodynamic coefficients CD and CH over water 
surfaces are shown, respectively, in Figs. 4 and 5 for the neutral stratification (empty squares) 
and the difference (Θ10 −ΘS ) taking on the values − 50 (diamonds) and 50 (filled squares) as 
functions of the wind speed at 10 m . In the case of the stable stratification, the parts of the plots 
corresponding to the values of the bulk Richardson number exceeding 0.19 are missing. 

Fig. 2. CD  over land for z0U = 0.10 m  as function of wind speed. 
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 Fig. 3. CH over land for z0U = 0.10 m as function of wind speed. 

Fig. 4. CD over water as function of wind speed. 

Fig. 5. CH over water as function of wind speed. 
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